

CBP Tech Note-387

Electron-Cloud Build-Up Simulations for the MI RFA: A Status Report

Miguel Furman LBNL

FNAL, 12-13 Nov., 2007

RFA detectors

RFA e⁻ detectors (ANL design; Rosenberg-Harkay) measure flux and energy spectrum

ion pump

Main Injector

ion gauge

beam separator

Example: 4 trains, N_b=(9.1–9.5)e10 (from I. Kourbanis report, ~26 Aug. 2007)

Bunch length during ramp (from I. Kourbanis report, ~26 Aug. 2007)

Fig. 9: Bunch length vs. momentum for 9.5E10 p/bunch. The bunch length in the above plot represents the average 95% half bunch length.

Summary of RFA measurements

(extracted from I. Kourbanis report, ~26 Aug. 2007)

- For this exercise, take measured RFA signal only at E_b=60 GeV
 - —this is the peak signal for all cases
- To convert RFA voltage signal to e⁻ flux (R. Zwaska):
 - —assume 1 μA/V
 - —divide by 1.5 cm²
 - this assumes 30% area efficiency

e⁻ flux at RFA vs. N_b for various fill patterns (E_b=60 GeV all cases)

"POSINST" code build-up simulations

- Use actual fill pattern for each case
 - —81 bunches/train
 - —train gap = five 53-MHz empty buckets
 - except for "UG" case: one long gap of 42 empty buckets
- Use actual values for N_b , σ_x , σ_y , σ_z
- So far, done only E_b=20, 45, 60 and 90 GeV
- Field-free pipe, 7.3 cm radius
- Average ecloud flux and density over 1 turn
 - —this is long enough for sensible time averages

Electron flux vs. peak SEY at E_b=60 GeV

FNAL 12-13 Nov. 2007

- Nicely clustered set of solutions for δ_{max}
 - —Indicates consistency in the model and the measurements

Furthermore...

- Flux/density consistent with simple theory, as expected
 - J_e/ρ_e≈a/(2t_b) (R. Zwaska)
 - This becomes exact in the limit a→0
- From J_e results (previous slide), conclude n_e~10¹⁰-10¹¹ m⁻³

However...

Qualitatively inconsistent with measurements

- Simulated results insensitive to E_b
 - —Qualitatively similar results when vary E_{max} and SE energy spectrum
- E_b enters only indirectly in the model, primarily through σ_z
 - —Therefore, not too surprising (to me) to see weak dependence on E_b

Conclusions

- Nice, consistent set of results at a given beam energy
 - Results from E_b=60 GeV data imply δ_{max} ~1.25–1.35 and n_e~10¹⁰–10¹¹ m⁻³ on average
 - Caveat: actual numbers depend on other assumed SEY parameters, eg., $E_{\rm max}$ and SE emission energy spectrum
 - But qualitative picture doesn't change much
- However, simulations ~insensitive to E_b
 - In qualitative disagreement with measurements
- What next:
 - Methodically assess one set of results for J_e vs. σ_z when one makes Δt smaller and smaller
- Is it possible that I am not simulating the real situation?
 - eg., could it be that stray B-fields during the ramp are messing up the RFA measurements?
- Can you stop the ramp and measure J_e and dN/dE at fixed E_b?